7 research outputs found

    Terrigenous sediment-dominated reef platform infilling: an unexpected precursor to reef island formation and a test of the reef platform size-island age model in the Pacific

    Get PDF
    Low-lying coral reef islands are considered highly vulnerable to climate change, necessitating an improved understanding of when and why they form, and how the timing of formation varies within and among regions. Several testable models have been proposed that explain inter-regional variability as a function of sea-level history and, more recently, a reef platform size model has been proposed from the Maldives (central Indian Ocean) to explain intra-regional (intra-atoll) variability. Here we present chronostratigraphic data from Pipon Island, northern Great Barrier Reef (GBR), enabling us to test the applicability of existing regional island evolution models, and the platform size control hypothesis in a Pacific context. We show that reef platform infilling occurred rapidly (~4–5 mm yr−1) under a “bucket-fill” type scenario. Unusually, this infilling was dominated by terrigenous sedimentation, with platform filling and subsequent reef flat formation complete by ~5000 calibrated years BP (cal BP). Reef flat exposure as sea levels slowly fell post highstand facilitated a shift towards intertidal and subaerial-dominated sedimentation. Our data suggest, however, a lag of ~1500 yr before island initiation (at ~3200 cal BP), i.e. later than that reported from smaller and more evolutionarily mature reef platforms in the region. Our data thus support: (1) the hypothesis that platform size acts to influence the timing of platform filling and subsequent island development at intra-regional scales; and (2) the hypothesis that the low wooded islands of the northern GBR conform to a model of island formation above an elevated reef flat under falling sea levels

    The Messinian reef complex of the Salento Peninsula (Southern Italy): Stratigraphy, facies and paleoenvironmental interpretation

    No full text
    An integrated study of the early Messinian reef complex cropping out along the eastern coast of the Salento Peninsula (southern Italy), including stratigraphy, facies analysis and paleoecological aspects, is here presented. Fourteen facies types belonging to three main facies associations (back reef and shelf, shelf-edge, slope) have been recognized. They document a wide spectrum of depositional environments, reef building organisms and growth fabrics, in response to depth and other environmental factors in different parts of the reef complex. The biotic structure of the reef is also described and discussed in detail. It consists of different types of reef building organisms and of their bioconstructions (mainly Porites coral reefs, Halimeda bioherms and vermetidmicrobial trottoirs), that differ in composition and structure according to their position on the shelf edge-to-slope profile. Results indicate that the reef complex of the Salento Peninsula has strong similarities with the typical early Messinian reefs of the Mediterranean region. However, the recognition of some peculiar features, i.e. the remarkable occurrence of Halimeda bioherms and of vermetid-microbial trottoirs, gives new insights for better understanding reef patterns and development of the reef belt during the Late Miocene in the Mediterranean
    corecore